Molecular mobility and Li(+) conduction in polyester copolymer ionomers based on poly(ethylene oxide).

نویسندگان

  • Daniel Fragiadakis
  • Shichen Dou
  • Ralph H Colby
  • James Runt
چکیده

We investigate the segmental and local dynamics as well as the transport of Li(+) cations in a series of model poly(ethylene oxide)-based single-ion conductors with varying ion content, using dielectric relaxation spectroscopy. We observe a slowing down of segmental dynamics and an increase in glass transition temperature above a critical ion content, as well as the appearance of an additional relaxation process associated with rotation of ion pairs. Conductivity is strongly coupled to segmental relaxation. For a fixed segmental relaxation frequency, molar conductivity increases with increasing ion content. A physical model of electrode polarization is used to separate ionic conductivity into the contributions of mobile ion concentration and ion mobility, and a model for the conduction mechanism involving transient triple ions is proposed to rationalize the behavior of these quantities as a function of ion content and the measured dielectric constant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphology of Ion-Containing Polymers: Correlations Between Structure, Dynamics, and Ion Conduction

Ion-containing polymers are of intense interest for applications in energy storage and conversion devices. The conductivities of these polymers are determined by both the ion mobility and the total number of mobile charge carriers, which in turn depend on the chemical structure and morphology. To rationally design ioncontaining polymers with high conductivity, a comprehensive understanding of t...

متن کامل

Adsorption of poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers at the silica-water interface.

The adsorption of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) and poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) copolymers in aqueous solution on silica and glass surfaces has been investigated by flow microcalorimetry, small-angle neutron scattering (SANS), surface forces, and complementary techniques. The studied copolymers consist of a poly(ethylene oxide) ...

متن کامل

Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) "bow-tie" hybrids with tunable molecular weight and architecture.

The design and preparation of new polyester dendrimer, poly(ethylene oxide) hybrid systems for drug delivery and related therapeutic applications, are described. These systems consist of two covalently attached polyester dendrons, where one dendron provides multiple functional handles for the attachment of therapeutically active moieties, while the other is used for attachment of solubilizing p...

متن کامل

Compositional Analysis of the High Molecular Weight Ethylene Oxide Propylene Oxide Copolymer by MALDI Mass Spectrometry

The composition of narrow distribution poly ethylene oxide-propylene oxide copolymer (Mw ~ 8700 Da) was studied using matrix assisted laser desorption ionization (MALDI) mass spectrometry. The ethylene oxide-propylene oxide copolymer produced oligomers separated by 14 Da. The average resolving power over the entire spectrum was 28,000. Approximately 448 isotopically resolved peaks representing ...

متن کامل

Compatibilization of polycarbonate/poly (ethylene terephthalate) blends by addition of their transesterification product

In this study, poly carbonate (PC) and poly (ethylene terephthalate) (PET) were reactive melt-blended under two different conditions to produce PC/PET copolymers. For each condition, samples were taken at specified mixing times representative a specific structure of copolymers and each one employed to physically compatibilize a PC/PET blend with a fixed composition. Reactive blending and copoly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 6  شماره 

صفحات  -

تاریخ انتشار 2009